Determinantal and Eigenvalue Inequalities for Matrices with Numerical Ranges in a Sector
نویسنده
چکیده
Let A = ( A11 A12 A21 A22 ) ∈ Mn, where A11 ∈ Mm with m ≤ n/2, be such that the numerical range of A lies in the set {eiφz ∈ C : |=z| ≤ (<z) tanα}, for some φ ∈ [0, 2π) and α ∈ [0, π/2). We obtain the optimal containment region for the generalized eigenvalue λ satisfying λ ( A11 0 0 A22 ) x = ( 0 A12 A21 0 ) x for some nonzero x ∈ C, and the optimal eigenvalue containment region of the matrix Im−A 11 A12A −1 22 A21 in case A11 and A22 are invertible. From this result, one can show | det(A)| ≤ sec(α)|det(A11) det(A22)|. In particular, if A is a accretive-dissipative matrix, then | det(A)| ≤ 2m| det(A11) det(A22)|. These affirm some conjectures of Drury and Lin. AMS subject classifications. 15A45.
منابع مشابه
Properties of matrices with numerical ranges in a sector
Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...
متن کاملStatistical Mechanics and Random Matrices
Statistical Mechanics and Random Matrices 3 1. Introduction 6 2. Motivations 7 3. The different scales; typical results 12 Lecture 1. Wigner matrices and moments estimates 15 1. Wigner's theorem 16 2. Words in several independent Wigner matrices 23 3. Estimates on the largest eigenvalue of Wigner matrices 25 Lecture 2. Gaussian Wigner matrices and Fredholm determinants 27 1. Joint law of the ei...
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملCartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کامل